.Select the odd one w.r.t classification of Mango (1) Family- Poaceae (2) Order-Sapindales (3) Class-Dicotyledonae (4) Division- Angiospermae
Answer ▽ ✅Verified
Answer (1) Mango belongs to family-Anacardiaceae The scientific name of mango is written as Mangifera indica. Let us see how it is a binomial name. In this name Mangifera represents the genus while indica, is a particular species, or a specific epithet. Name of the author appears after the specific epithet, i.e., at the end of the biological name and is written in an abbreviated form, e.g., Mangifera indica Linn. It indicates that this species was first described by Linnaeus. Common Name=Mango Biological Name= Mangifera indica Genus= Mangifera Family-Anacardiaceae order= sapindales Class-Dicotyledonae Division-Angiospermae THE FRUIT In mango and coconut, the fruit is known as a drupe. They develop from monocarpellary superior ovaries and are one seeded. In mango the pericarp is well differentiated into an outer thin epicarp, a middle fleshy edible mesocarp and an inner stony hard endocarp. In coconut which is also a drupe, the mesocarp is fibrous. Ethylene is used to initiate flowering and for synchronising fruit-set in pineapples. It also induces flowering in mango The number of ovules in an ovary may be one (wheat, paddy, mango) to many (papaya, water melon, orchids). As ovules mature into seeds, the ovary develops into a fruit, i.e., the transformation of ovules into seeds and ovary into fruit proceeds simultaneously. The wall of the ovary develops into the wall of fruit called pericarp. The fruits may be fleshy as in guava, orange, mango, etc., or may be dry, as in groundnut, and mustard, etc. Many fruits have evolved mechanisms for dispersal of seeds. APOMIXIS AND POLYEMBRYONY Although seeds, in general are the products of fertilisation, a few flowering plants such as some species of Asteraceae and grasses, have evolved a special mechanism, to produce seeds without fertilisation, called apomixis. Thus, apomixis is a form of asexual reproduction that mimics sexual reproduction. There are several ways of development of apomictic seeds. In some species, the diploid egg cell is formed without reduction division and develops into the embryo without fertilisation. More often, as in many Citrus and Mango varieties some of the nucellar cells surrounding the embryo sac start dividing, protrude into the embryo sac and develop into the embryos. In such species each ovule contains many embryos. Occurrence of more than one embryo in a seed is referred to as polyembryony. If these hybrids are made into apomicts, there is no segregation of characters in the hybrid progeny. Then the farmers can keep on using the hybrid seeds to raise new crop year after year and he does not have to buy hybrid seeds every year. Because of the importance of apomixis in hybrid seed industry, active research is going on in many laboratories around the world to understand the genetics of apomixis and to transfer apomictic genes into hybrid varieties. It is general knowledge that mango trees do not and cannot grow in temperate countries like Canada and Germany. Commensalism: This is the interaction in which one species benefits and the other is neither harmed nor benefited. An orchid growing as an epiphyte on a mango branch, and barnacles growing on the back of a whale benefit while neither the mango tree nor the whale derives any apparent benefit. The cattle egret and grazing cattle in close association, a sight you are most likely to catch if you live in farmed rural areas, is a classic example of commensalism. The egrets always forage close to where the cattle are grazing because the cattle, as they move, stir up and flush out insects from the vegetation that otherwise might be difficult for the egrets to find and catch. Another example of commensalism is the interaction between sea anemone that has stinging tentacles and the clown fish that lives among them. The fish gets protection from predators which stay away from the stinging tentacles. The anemone does not appear to derive any benefit by hosting the clown fish. An orchid plant is growing on the branch of mango tree. How do you describe this interaction between the orchid and the mango tree? Genetic diversity: A single species might show high diversity at the genetic level over its distributional range. The genetic variation shown by the medicinal plant Rauwolfia vomitoria growing in different Himalayan ranges might be in terms of the potency and concentration of the active chemical (reserpine) that the plant produces. India has more than 50,000 genetically different strains of rice, and 1,000 varieties of mango.
___@organised notes_____
.All of the following are true for Mycoplasma, except (1) Can grow in anerobic condition (2) Cell wall is made up of peptidoglycan (3) Insensitive to penicillin (4) Also known as PPLO
Answer ▽ ✅Verified
Answer (2) Mycoplasma lack cell wall The Mycoplasma are organisms that completely lack a cell wall. They are the smallest living cells known and can survive without oxygen. Many mycoplasma are pathogenic in animals and plants. The prokaryotic cells are represented by bacteria, blue-green algae, mycoplasma and PPLO (Pleuro Pneumonia Like Organisms). They are generally smaller and multiply more rapidly than the eukaryotic cells. prokaryotes have a cell wall surrounding the cell membrane except in mycoplasma.
___@organised notes_____
.Protein rich layer named pellicle is present in (1) Euglenoids (2) Diatoms (3) Dinoflagellates (4) Slime moulds
Answer ▽ ✅Verified
Answer (1) Protein rich layer named pellicle is present in euglenoids. KINGDOM PROTISTA All single-celled eukaryotes are placed under Protista, but the boundaries of this kingdom are not well defined. What may be ‘a photosynthetic protistan’ to one biologist may be ‘a plant’ to another. In this book we include Chrysophytes, Dinoflagellates, Euglenoids, Slime moulds and Protozoans under Protista. Members of Protista are primarily aquatic. This kingdom forms a link with the others dealing with plants, animals and fungi. Being eukaryotes, the protistan cell body contains a well defined nucleus and other membrane-bound organelles. Some have flagella or cilia. Protists reproduce asexually and sexually by a process involving cell fusion and zygote formation. Chrysophytes This group includes diatoms and golden algae (desmids). They are found in fresh water as well as in marine environments. They are microscopic and float passively in water currents (plankton). Most of them are photosynthetic. In diatoms the cell walls form two thin overlapping shells, which fit together as in a soap box. The walls are embedded with silica and thus the walls are indestructible. Thus, diatoms have left behind large amount of cell wall deposits in their habitat; this accumulation over billions of years is referred to as ‘diatomaceous earth’. Being gritty this soil is used in polishing, filtration of oils and syrups. Diatoms are the chief ‘producers’ in the oceans. Dinoflagellates These organisms are mostly marine and photosynthetic. They appear yellow, green, brown, blue or red depending on the main pigments present in their cells. The cell wall has stiff cellulose plates on the outer surface. Most of them have two flagella; one lies longitudinally and the other transversely in a furrow between the wall plates. Very often, red dinoflagellates (Example: Gonyaulax) undergo such rapid multiplication that they make the sea appear red (red tides). Toxins released by such large numbers may even kill other marine animals such as fishes. Euglenoids Majority of them are fresh water organisms found in stagnant water. Instead of a cell wall, they have a protein rich layer called pellicle which makes their body flexible. They have two flagella, a short and a long one. Though they are photosynthetic in the presence of sunlight, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms. Interestingly, the pigments of euglenoids are identical to those present in higher plants. Example: Euglena Slime Moulds Slime moulds are saprophytic protists. The body moves along decaying twigs and leaves engulfing organic material. Under suitable conditions, they form an aggregation called plasmodium which may grow and spread over several feet. During unfavourable conditions, the plasmodium differentiates and forms fruiting bodies bearing spores at their tips. The spores possess true walls. They are extremely resistant and survive for many years, even under adverse conditions. The spores are dispersed by air currents. Protozoans All protozoans are heterotrophs and live as predators or parasites. They are believed to be primitive relatives of animals. There are four major groups of protozoans. Amoeboid protozoans: These organisms live in fresh water, sea water or moist soil. They move and capture their prey by putting out pseudopodia (false feet) as in Amoeba. Marine forms have silica shells on their surface. Some of them such as Entamoeba are parasites. Flagellated protozoans: The members of this group are either free-living or parasitic. They have flagella. The parasitic forms cause diaseases such as sleeping sickness. Example: Trypanosoma. Ciliated protozoans: These are aquatic, actively moving organisms because of the presence of thousands of cilia. They have a cavity (gullet) that opens to the outside of the cell surface. The coordinated movement of rows of cilia causes the water laden with food to be steered into the gullet. Example: Paramoecium Sporozoans: This includes diverse organisms that have an infectious spore-like stage in their life cycle. The most notorious is Plasmodium (malarial parasite) which causes malaria, a disease which has a staggering effect on human population. What are the characteristic features of Euglenoids?
___@organised notes_____
.Fungus which is a member of Ascomycetes is (1) Alternaria (2) Penicillium (3) Colletotrichum (4) Trichoderma
Answer ▽ ✅Verified
Answer (2) Penicillium is a member of Ascomycetes. Ascomycetes Commonly known as sac-fungi, the ascomycetes are mostly multicellular, e.g., Penicillium, or rarely unicellular, e.g., yeast (Saccharomyces). They are saprophytic, decomposers, parasitic or coprophilous (growing on dung). Mycelium is branched and septate. The asexual spores are conidia produced exogenously on the special mycelium called conidiophores. Conidia on germination produce mycelium. Sexual spores are called ascospores which are produced endogenously in sac like asci (singular ascus). These asci are arranged in different types of fruiting bodies called ascocarps. Some examples are Aspergillus, Claviceps and Neurospora. Neurospora is used extensively in biochemical and genetic work. Many members like morels and truffles are edible and are considered delicacies. Asexual reproductive structures: (a) Zoospores of Chlamydomonas; (b) Conidia of Penicillium; (c) Buds in Hydra; (d) Gemmules in sponge You are familiar with the commonly used antibiotic Penicillin. Do you know that Penicillin was the first antibiotic to be discovered, and it was a chance discovery? Alexander Fleming while working on Staphylococci bacteria, once observed a mould growing in one of his unwashed culture plates around which Staphylococci could not grow. He found out that it was due to a chemical produced by the mould and he named it Penicillin after the mould Penicillium notatum. However, its full potential as an effective antibiotic was established much later by Ernest Chain and Howard Florey. This antibiotic was extensively used to treat American soldiers wounded in World War II. Fleming, Chain and Florey were awarded the Nobel Prize in 1945, for this discovery. Antibiotics have greatly improved our capacity to treat deadly diseases such as plague, whooping cough (kali khansi ), diphtheria (gal ghotu) and leprosy (kusht rog), which used to kill millions all over the globe. KINGDOM FUNGI The common mushroom you eat and toadstools are also fungi. White spots seen on mustard leaves are due to a parasitic fungus. Some unicellular fungi, e.g., yeast are used to make bread and beer. Other fungi cause diseases in plants and animals; wheat rust-causing Puccinia is an important example. Some are the source of antibiotics, e.g., Penicillium. With the exception of yeasts which are unicellular, fungi are filamentous. ascomycetes and basidiomycetes), an intervening dikaryotic stage (n + n, i.e., two nuclei per cell) occurs; such a condition is called a dikaryon and the phase is called dikaryophase of fungus. Phycomycetes:Mucor,Rhizopusthe bread mould),Albugo (the parasitic fungi on mustard). Ascomycetes:Penicillium,yeast,Aspergillus.Claviceps and Neurospora Basidiomycetes:Agaricus (mushroom) , Ustilago (smut) and Puccinia (rust fungus). Deuteromycetes:Alternaria, Colletotrichum and Trichoderma.
___@organised notes_____
.Which of the given feature is true about the viroids? (1) They have DNA as main genetic material (2) They are discovered by T.O Diener (3) Capsomeres are present (4) Larger than viruses
Answer ▽ ✅Verified
Answer (2) Viroids are smaller than viruses having RNA as a genetic material and lack protein coat. Microbes are diverse–protozoa, bacteria, fungi and microscopic animal and plant viruses, viroids and also prions that are proteinacious infectious agents. In the five kingdom classification of Whittaker there is no mention of lichens and some acellular organisms like viruses, viroids and prions. Viruses did not find a place in classification since they are not considered truly ‘living’, if we understand living as those organisms that have a cell structure. The viruses are non-cellular organisms that are characterised by having an inert crystalline structure outside the living cell. Once they infect a cell they take over the machinery of the host cell to replicate themselves, killing the host. The name virus that means venom or poisonous fluid was given by Dmitri Ivanowsky (1892) recognised certain microbes as causal organism of the mosaic disease of tobacco . These were found to be smaller than bacteria because they passed through bacteria-proof filters. M.W. Beijerinek (1898) demonstrated that the extract of the infected plants of tobacco could cause infection in healthy plants and called the fluid as Contagium vivum fluidum (infectious living fluid). W.M. Stanley (1935) showed that viruses could be crystallised and crystals consist largely of proteins. They are inert outside their specific host cell. Viruses are obligate parasites. In addition to proteins, viruses also contain genetic material, that could be either RNA or DNA. No virus contains both RNA and DNA. A virus is a nucleoprotein and the genetic material is infectious. In general, viruses that infect plants have single stranded RNA and viruses that infect animals have either single or double stranded RNA or double stranded DNA. Bacterial viruses or bacteriophages (viruses that infect the bacteria) are usually double stranded DNA viruses (Figure 2.6b). The protein coat called capsid made of small subunits called capsomeres, protects the nucleic acid. These capsomeres are arranged in helical or polyhedral geometric forms. Viruses cause diseases like mumps, small pox, herpes and influenza. AIDS in humans is also caused by a virus. In plants, the symptoms can be mosaic formation, leaf rolling and curling, yellowing and vein clearing, dwarfing and stunted growth. Viroids : In 1971, T.O. Diener discovered a new infectious agent that was smaller than viruses and caused potato spindle tuber disease. It was found to be a free RNA; it lacked the protein coat that is found in viruses, hence the name viroid. The RNA of the viroid was of low molecular weight. Prions : In modern medicine certain infectious neurological diseases were found to be transmitted by an agent consisting of abnormally folded protein. The agent was similar in size to viruses. These agents were called prions. The most notable diseases caused by prions are bovine spongiform encephalopathy (BSE) commonly called mad cow disease in cattle and its analogous variant Cr–Jacob disease (CJD) in humans. How are viroids different from viruses?
___@organised notes_____
.Select the incorrectly matched pair (1) Microphylls : Selaginella (2) Macrophylls: Ferns (3) Leafy stage present: Funaria (4) Well-developed vascular tissues: Marchantia
Answer ▽ ✅Verified
Answer (4) Bryophytes lack well developed vascular tissues BRYOPHYTES Bryophytes include the various mosses and liverworts that are found commonly growing in moist shaded areas in the hills Bryophytes are also called amphibians of the plant kingdom because these plants can live in soil but are dependent on water for sexual reproduction. They usually occur in damp, humid and shaded localities. They play an important role in plant succession on bare rocks/soil. The plant body of bryophytes is more differentiated than that of algae. It is thallus-like and prostrate or erect, and attached to the substratum by unicellular or multicellular rhizoids. They lack true roots, stem or leaves. They may possess root-like, leaf-like or stem-like structures. The main plant body of the bryophyte is haploid. It produces gametes, hence is called a gametophyte. The sex organs in bryophytes are multicellular. The male sex organ is called antheridium. They produce biflagellate antherozoids. The female sex organ called archegonium is flask-shaped and produces a single egg. The antherozoids are released into water where they come in contact with archegonium. An antherozoid fuses with the egg to produce the zygote. Zygotes do not undergo reduction division immediately. They produce a multicellular body called a sporophyte. The sporophyte is not free-living but attached to the photosynthetic gametophyte and derives nourishment from it. Some cells of the sporophyte undergo reduction division (meiosis) to produce haploid spores. These spores germinate to produce gametophyte. Bryophytes in general are of little economic importance but some mosses provide food for herbaceous mammals, birds and other animals. Species of Sphagnum, a moss, provide peat that have long been used as fuel, and as packing material for trans-shipment of living material because of their capacity to hold water. Mosses along with lichens are the first organisms to colonise rocks and hence, are of great ecological importance. They decompose rocks making the substrate suitable for the growth of higher plants. Since mosses form dense mats on the soil, they reduce the impact of falling rain and prevent soil erosion. The bryophytes are divided into liverworts and mosses. Liverworts The liverworts grow usually in moist, shady habitats such as banks of streams, marshy ground, damp soil, bark of trees and deep in the woods. The plant body of a liverwort is thalloid, e.g., Marchantia. The thallus is dorsiventral and closely appressed to the substrate. The leafy members have tiny leaf-like appendages in two rows on the stem-like structures. Asexual reproduction in liverworts takes place by fragmentation of thalli, or by the formation of specialised structures called gemmae (sing. gemma). Gemmae are green, multicellular, asexual buds, which develop in small receptacles called gemma cups located on the thalli. The gemmae become detached from the parent body and germinate to form new individuals. During sexual reproduction, male and female sex organs are produced either on the same or on different thalli. The sporophyte is differentiated into a foot, seta and capsule. After meiosis, spores are produced within the capsule. These spores germinate to form free-living gametophytes. Mosses The predominant stage of the life cycle of a moss is the gametophyte which consists of two stages. The first stage is the protonema stage, which develops directly from a spore. It is a creeping, green, branched and frequently filamentous stage. The second stage is the leafy stage, which develops from the secondary protonema as a lateral bud. They consist of upright, slender axes bearing spirally arranged leaves. They are attached to the soil through multicellular and branched rhizoids. This stage bears the sex organs. Vegetative reproduction in mosses is by fragmentation and budding in the secondary protonema. In sexual reproduction, the sex organs antheridia and archegonia are produced at the apex of the leafy shoots. After fertilisation, the zygote develops into a sporophyte, consisting of a foot, seta and capsule. The sporophyte in mosses is more elaborate than that in liverworts. The capsule contains spores. Spores are formed after meiosis. The mosses have an elaborate mechanism of spore dispersal. Common examples of mosses are Funaria, Polytrichum and Sphagnum PTERIDOPHYTES These organs possess well-differentiated vascular tissues. The leaves in pteridophyta are small (microphylls) as in Selaginella or large (macrophylls) as in ferns. Pteridophytes : (a) Selaginella (b) Equisetum (c) Fern (d) Salvinia
___@organised notes_____
.Which of the following plant show haplo-diplontic life cycle? (1) Chlamydomonas (2) Ulothrix (3) Polysiphonia (4) Fucus
Answer ▽ ✅Verified
Answer (3) Polysiphonia exhibits haplodiplontic life-cycle pattern. Interestingly, while most algal genera are haplontic, some of them such as Ectocarpus, Polysiphonia, kelps are haplo-diplontic. Fucus, an alga is diplontic. All pteridophytes exhibit haplo-diplontic life cycle. All bryophytes represent haploid life cycle. Chlamydomonas, Some commonly found green algae are: Chlamydomonas, Volvox, Ulothrix, Spirogyra and Chara The common brown algae: Ectocarpus, Dictyota, Laminaria, Sargassum and Fucus. The common red algae are: Polysiphonia, Porphyra , Gracilaria and Gelidium. The dominant, photosynthetic phase in some plants is the free-living gametophyte. This kind of life cycle is termed as haplontic. Many algae such as Volvox, Spirogyra and some species of Chlamydomonas represent this pattern. Bryophytes and pteridophytes, interestingly, exhibit an intermediate condition (Haplo-diplontic); both phases are multicellular. However, they differ in their dominant phases. Majority of the chloroplasts of the green plants are found in the mesophyll cells of the leaves. These are lens-shaped, oval, spherical, discoid or even ribbon-like organelles having variable length (5-10μm) and width (2-4μm). Their number varies from 1 per cell of the Chlamydomonas, a green alga to 20-40 per cell in the mesophyll. Asexual reproductive structures: (a) Zoospores of Chlamydomonas; (b) Conidia of Penicillium; (c) Buds in Hydra; (d) Gemmules in sponge five kingdom classification:All prokaryotic organisms were grouped together under Kingdom Monera and the unicellular eukaryotic organisms were placed in Kingdom Protista. Kingdom Protista has brought together Chlamydomonas, Chlorella (earlier placed in Algae within Plants and both having cell walls) with Paramoecium and Amoeba (which were earlier placed in the animal kingdom which lack cell wall).
___@organised notes_____
.How many of the given plants have zygomorphic flowers? Mustard, Datura, Chilli, Gulmohur, Bean (1) Four (2) Three (3) Two (4) One
Answer ▽ ✅Verified
Answer (3) Gulmohar and Bean THE FLOWER A typical flower has four different kinds of whorls arranged successively on the swollen end of the stalk or pedicel, called thalamus or receptacle. These are calyx, corolla, androecium and gynoecium. Calyx and corolla are accessory organs, while androecium and gynoecium are reproductive organs. In some flowers like lily, the calyx and corolla are not distinct and are termed as perianth. When a flower has both androecium and gynoecium, it is bisexual. A flower having either only stamens or only carpels is unisexual. In symmetry, the flower may be actinomorphic (radial symmetry) or zygomorphic (bilateral symmetry). When a flower can be divided into two equal radial halves in any radial plane passing through the centre, it is said to be actinomorphic, e.g., mustard, datura, chilli. When it can be divided into two similar halves only in one particular vertical plane, it is zygomorphic, e.g., pea, gulmohur, bean, Cassia. A flower is asymmetric (irregular) if it cannot be divided into two similar halves by any vertical plane passing through the centre, as in canna. The floral formula is represented by some symbols.÷for zygomorphic nature of flower. Fabaceae Flower: bisexual, zygomorphic Solanaceae Flower: bisexual, actinomorphic Liliaceae Flower: bisexual; actinomorphic Define the following terms: (a) aestivation (b) placentation (c) actinomorphic (d) zygomorphic (e) superior ovary (f) perigynous flower (g) epipetalous stamen
___@organised notes_____
.Which of the following statement is not true for the EMP pathway? (1) Phosphofructokinase enzyme is also known as pacemaker enzyme (2) Net 4 ATP gained (3) Two pyruvic acid molecules are formed (4) Hexokinase enzyme is the first enzyme of pathway
Answer ▽ ✅Verified
Answer (2) Net 2 ATPs are gained in EMP or glycolysis pathway. Can you then calculate how many ATP molecules are directly synthesised in this pathway from one glucose molecule?
___@organised notes_____
.All of the given are reactants of TCA cycle except (1) Succinyl CoA (2) Fumaric acid (3) Citric acid (4) Pyruvic acid
Answer ▽ ✅Verified
Answer (4) Pyruvic acid is product of EMP pathway. Pyruvic acid is then the key product of glycolysis. What is the metabolic fate of pyruvate? This depends on the cellular need.There are three major ways in which different cells handle pyruvic acid produced by glycolysis. These are lactic acid fermentation, alcoholic fermentation and aerobic respiration.FERMENTATION In fermentation, say by yeast, the incomplete oxidation of glucose is achieved under anaerobic conditions by sets of reactions where pyruvic acid is converted to CO2 and ethanol.In fermentation there is a net gain of only two molecules of ATP for each molecule of glucose degraded to pyruvic acid whereas many more molecules of ATP are generated under aerobic conditions. The enzymes, pyruvic acid decarboxylase and alcohol dehydrogenase catalyse these reactions. Other organisms like some bacteria produce lactic acid from pyruvic acid.In animal cells also, like muscles during exercise, when oxygen is inadequate for cellular respiration pyruvic acid is reduced to lactic acid by lactate dehydrogenase. The reducing agent is NADH+H+ which is reoxidised to NAD+ in both the processes. ATP is synthesised during the conversion of PEP to pyruvic acid. AEROBIC RESPIRATION For aerobic respiration to take place within the mitochondria, the final product of glycolysis, pyruvate is transported from the cytoplasm into the mitochondria. The crucial events in aerobic respiration are: • The complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms, leaving three molecules of CO2. • The passing on of the electrons removed as part of the hydrogen atoms to molecular O2 with simultaneous synthesis of ATP. What is interesting to note is that the first process takes place in the matrix of the mitochondria while the second process is located on the inner membrane of the mitochondria. Pyruvate, which is formed by the glycolytic catabolism of carbohydrates in the cytosol, after it enters mitochondrial matrix undergoes oxidative decarboxylation by a complex set of reactions catalysed by pyruvic dehydrogenase. The reactions catalysed by pyruvic dehydrogenase require the participation of several coenzymes, including NAD+ and Coenzyme A. During this process, two molecules of NADH are produced from the metabolism of two molecules of pyruvic acid (produced from one glucose molecule during glycolysis). The acetyl CoA then enters a cyclic pathway, tricarboxylic acid cycle, more commonly called as Krebs’ cycle after the scientist Hans Krebs who first elucidated it.
___@organised notes_____
.Using a prism, a scientist splitted light into its spectral components and then illuminated a green alga, Cladophora. In the above statement the scientist who performed the above experiment was (1) T.W Engelmann (2) Julius von Sachs (3) Jan Ingenhousz (4) Joseph Priestley
Answer ▽ ✅Verified
Answer (1) Using a prism T.W. Englelmann split light into its spectral components and then illuminated a green alga, Cladophora. Experiments that led to a gradual development in our understanding of photosynthesis:Joseph Priestley (1733-1804) in 1770 performed a series of experiments that revealed the essential role of air in the growth of green plants. Priestley, you may recall, discovered oxygen in 1774. Priestley observed that a candle burning in a closed space – a bell jar, soon gets extinguished.Similarly, a mouse would soon suffocate in a closed space. He concluded that a burning candle or an animal that breathe the air, both somehow, damage the air. But when he placed a mint plant in the same bell jar, he found that the mouse stayed alive and the candle continued to burn. Priestley hypothesised as follows: Plants restore to the air whatever breathing animals and burning candles remove.Using a similar setup as the one used by Priestley, but by placing it once in the dark and once in the sunlight, Jan Ingenhousz (1730-1799) showed that sunlight is essential to the plant process that somehow purifies the air fouled by burning candles or breathing animals. Ingenhousz in an elegant experiment with an aquatic plant showed that in bright sunlight, small bubbles were formed around the green parts while in the dark they did not.Hence he showed that it is only the green part of the plants that could release oxygen.It was not until about 1854 that Julius von Sachs provided evidence for production of glucose when plants grow. Glucose is usually stored as starch. His later studies showed that the green substance in plants (chlorophyll as we know it now) is located in special bodies (later called chloroplasts) within plant cells. He found that the green parts in plants is where glucose is made, and that the glucose is usually stored as starch.Now consider the interesting experiments done by T.W Engelmann (1843 – 1909). Using a prism he split light into its spectral components and then illuminated a green alga, Cladophora, placed in a suspension of aerobic bacteria. The bacteria were used to detect the sites of O2 evolution. He observed that the bacteria accumulated mainly in the region of blue and red light of the split spectrum. A first action spectrum of photosynthesis was thus described. It resembles roughly the absorption spectra of chlorophyll a and b.A milestone contribution to the understanding of photosynthesis was that made by a microbiologist, Cornelius van Niel (1897-1985), who, based on his studies of purple and green bacteria, demonstrated that photosynthesis is essentially a light-dependent reaction in which hydrogen from a suitable oxidisable compound reduces carbon dioxide to carbohydrates.In green plants H2O is the hydrogen donor and is oxidised to O2. Some organisms do not release O2 during photosynthesis. When H2S, instead is the hydrogen donor for purple and green sulphur bacteria, the ‘oxidation’ product is sulphur or sulphate depending on the organism and not O2. Hence, he inferred that the O2 evolved by the green plant comes from H2O, not from carbon dioxide. This was later proved by using radioisotopic techniques.
___@organised notes_____
.The naturally produced auxin is (1) NAA (2) 2,4-D (3) Zeatin (4) IAA
Answer ▽ ✅Verified
Answer (4) NAA and 2,4-D are synthetic auxins. Zeatin is a cytokinin.The Discovery of Plant Growth Regulators:All this started with the observation of Charles Darwin and his son Francis Darwin when they observed that the coleoptiles of canary grass responded to unilateral illumination by growing towards the light source (phototropism). After a series of experiments, it was concluded that the tip of coleoptile was the site of transmittable influence that caused the bending of the entire coleoptile.Auxin was isolated by F.W. Went from tips of coleoptiles of oat seedlings.Auxins Auxins (from Greek ‘auxein’ : to grow) was first isolated from human urine. The term ‘auxin’ is applied to the indole-3-acetic acid (IAA), and to other natural and synthetic compounds having certain growth regulating properties. They are generally produced by the growing apices of the stems and roots, from where they migrate to the regions of their action. Auxins like IAA and indole butyric acid (IBA) have been isolated from plants. NAA (naphthalene acetic acid) and 2, 4-D (2, 4-dichlorophenoxyacetic) are synthetic auxins. All these auxins have been used extensively in agricultural and horticultural practices.They help to initiate rooting in stem cuttings, an application widely used for plant propagation. Auxins promote flowering e.g. in pineapples. They help to prevent fruit and leaf drop at early stages but promote the abscission of older mature leaves and fruits. In most higher plants, the growing apical bud inhibits the growth of the lateral (axillary) buds, a phenomenon called apical dominance. Removal of shoot tips (decapitation) usually results in the growth of lateral buds (Figure 15.11). It is widely applied in tea plantations, hedge-making. Can you explain why?Auxins also induce parthenocarpy, e.g., in tomatoes. They are widely used as herbicides. 2, 4-D, widely used to kill dicotyledonous weeds, does not affect mature monocotyledonous plants. It is used to prepare weed-free lawns by gardeners. Auxin also controls xylem differentiation and helps in cell division.Zinc: Plants obtain zinc as Zn2+ ions. It activates various enzymes, especially carboxylases. It is also needed in the synthesis of auxin.Cytokinins Cytokinins have specific effects on cytokinesis, and were discovered as kinetin (a modified form of adenine, a purine) from the autoclaved herring sperm DNA. Kinetin does not occur naturally in plants. Search for natural substances with cytokinin-like activities led to the isolation of zeatin from corn-kernels and coconut milk. Since the discovery of zeatin, several naturally occurring cytokinins, and some synthetic compounds with cell division promoting activity, have been identified. Natural cytokinins are synthesised in regions where rapid cell division occurs, for example, root apices, developing shoot buds, young fruits etc. It helps to produce new leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot formation. Cytokinins help overcome the apical dominance. They promote nutrient mobilisation which helps in the delay of leaf senescence.
___@organised notes_____
.Embryo sac of angiosperms (1) Has 3 synergids and 2 antipodal cells (2) Has three celled egg apparatus (3) Is a 8 celled and 7 nucleate structure (4) Has three antipodal cells at micropylar end
Answer ▽ ✅Verified
Answer (2) Three celled egg apparatus is found in embryo sac of angiosperms.Embryogenesis Embryogenesis refers to the process of development of embryo from the zygote. During embryogenesis, zygote undergoes cell division (mitosis) and cell differentiation.The zygote develops into the embryo and the ovules develop into the seed. The ovary develops into the fruit which develops a thick wall called pericarp that is protective in function .In flowering plants, the zygote is formed inside the ovule.The process of development of embryo from the zygote is called embryogenesis. In animals, the zygote starts developing soon after its formation. Animals may be either oviparous or viviparous. Embryonal protection and care are better in viviparous organisms. In flowering plants, after fertilisation, ovary develops into fruit and ovules mature into seeds. Inside the mature seed is the progenitor of the next generation, the embryo.The Megasporangium (Ovule) : Let us familiarise ourselves with the structure of a typical angiosperm ovule (Figure 2.7d). The ovule is a small structure attached to the placenta by means of a stalk called funicle. The body of the ovule fuses with funicle in the region called hilum. Thus, hilum represents the junction between ovule and funicle. Each ovule has one or two protective envelopes called integuments. Integuments encircle the nucellus except at the tip where a small opening called the micropyle is organised. Opposite the micropylar end, is the chalaza, representing the basal part of the ovule. Enclosed within the integuments is a mass of cells called the nucellus. Cells of the nucellus have abundant reserve food materials. Located in the nucellus is the embryo sac or female gametophyte. An ovule generally has a single embryo sac formed from a megaspore.Female gametophyte : In a majority of flowering plants, one of the megaspores is functional while the other three degenerate. Only the functional megaspore develops into the female gametophyte (embryo sac). This method of embryo sac formation from a single megaspore is termed monosporic development. What will be the ploidy of the cells of the nucellus, MMC, the functional megaspore and female gametophyte?study formation of the embryo sac in a little more detail. (Figure 2.8b). The nucleus of the functional megaspore divides mitotically to form two nuclei which move to the opposite poles, forming the 2-nucleate embryo sac. Two more sequential mitotic nuclear divisions result in the formation of the 4-nucleate and later the 8-nucleate stages of the embryo sac. It is of interest to note that these mitotic divisions are strictly free nuclear, that is, nuclear divisions are not followed immediately by cell wall formation. After the 8-nucleate stage, cell walls are laid down leading to the organisation of the typical female gametophyte or embryo sac. Observe the distribution of cells inside the embryo sac (Figure 2.8b, c). Six of the eight nuclei are surrounded by cell walls and organised into cells; the remaining two nuclei, called polar nuclei are situated below the egg apparatus in the large central cell. There is a characteristic distribution of the cells within the embryo sac. Three cells are grouped together at the micropylar end and constitute the egg apparatus. The egg apparatus, in turn, consists of two synergids and one egg cell. The synergids have special cellular thickenings at the micropylar tip called filiform apparatus, which play an important role in guiding the pollen tubes into the synergid. Three cells are at the chalazal end and are called the antipodals. The large central cell, as mentioned earlier, has two polar nuclei. Thus, a typical angiosperm embryo sac, at maturity, though 8-nucleate is 7-celled.Pollinationmale and female gametes in flowering plants are produced in the pollen grain and embryo sac, respectively. As both types of gametes are non-motile, they have to be brought together for fertilisation to occur. How is this achieved? Pollination is the mechanism to achieve this objective.DOUBLE FERTILISATION After entering one of the synergids, the pollen tube releases the two male gametes into the cytoplasm of the synergid. One of the male gametes moves towards the egg cell and fuses with its nucleus thus completing the syngamy. This results in the formation of a diploid cell, the zygote. The other male gamete moves towards the two polar nuclei located in the central cell and fuses with them to produce a triploid primary endosperm nucleus (PEN) (Figure 2.13a). As this involves the fusion of three haploid nuclei it is termed triple fusion. Since two types of fusions, syngamy and triple fusion take place in an embryo sac the phenomenon is termed double fertilisation, an event unique to flowering plants. The central cell after triple fusion becomes the primary endosperm cell (PEC) and develops into the endosperm while the zygote develops into an embryo.Endosperm Endosperm development precedes embryo development. Why? The primary endosperm cell divides repeatedly and forms a triploidendosperm tissue. The cells of this tissue are filled with reserve food materials and are used for the nutrition of the developing embryo. In the most common type of endosperm development, the PEN undergoes successive nuclear divisions to give rise to free nuclei. This stage of endosperm development is called free-nuclear endosperm. Subsequently cell wall formation occurs and the endosperm becomes cellular. The number of free nuclei formed before cellularisation varies greatly. The coconut water from tender coconut that you are familiar with, is nothing but free-nuclear endosperm (made up of thousands of nuclei) and the surrounding white kernel is the cellular endosperm. Endosperm may either be completely consumed by the developing embryo (e.g., pea, groundnut, beans) before seed maturation or it may persist in the mature seed (e.g. castor and coconut) and be used up during seed germination.Embryo Embryo develops at the micropylar end of the embryo sac where the zygote is situated. Most zygotes divide only after certain amount of endosperm is formed. This is an adaptation to provide assured nutrition to the developing embryo. Though the seeds differ greatly, the early stages of embryo development (embryogeny) are similar in both monocotyledons and dicotyledons.The zygote gives rise to the proembryo and subsequently to the globular, heart-shaped and mature embryo.A typical dicotyledonous embryo (Figure 2.14a), consists of an embryonal axis and two cotyledons. The portion of embryonal axis above the level of cotyledons is the epicotyl, which terminates with the plumule or stem tip. The cylindrical portion below the level of cotyledons is hypocotyl that terminates at its lower end in the radicle or root tip. The root tip is covered with a root cap. Embryos of monocotyledons (Figure 2.14 b) possess only one cotyledon. In the grass family the cotyledon is called scutellum that is situated towards one side (lateral) of the embryonal axis. At its lower end, the embryonal axis has theradical and root cap enclosed in an undifferentiated sheath called coleorrhiza. The portion of the embryonal axis above the level of attachment of scutellum is the epicotyl. Epicotyl has a shoot apex and a few leaf primordia enclosed in a hollow foliar structure, the coleoptile.Seed In angiosperms, the seed is the final product of sexual reproduction. It is often described as a fertilised ovule. Seeds are formed inside fruits. A seed typically consists of seed coat(s), cotyledon(s) and an embryo axis. The cotyledons (Figure 2.15a) of the embryo are simple structures, generally thick and swollen due to storage of food reserves (as in legumes). Mature seeds may be non-albuminous or ex-albuminous. Nonalbuminous seeds have no residual endosperm as it is completely consumed during embryo development (e.g., pea, groundnut). Albuminous seeds retain a part of endosperm as it is not completely used up during embryo development (e.g., wheat, maize, barley, castor). Occasionally, in some seeds such as black pepper and beet, remnants of nucellus are also persistent. This residual, persistent nucellus is the perisperm.Integuments of ovules harden as tough protective seed coats (Figure 2.15a). The micropyle remains as a small pore in the seed coat. This facilitates entry of oxygen and water into the seed during germination. As the seed matures, its water content is reduced and seeds become relatively dry (10-15 per cent moisture by mass). The general metabolic activity of the embryo slows down. The embryo may enter a state of inactivity called dormancy, or if favourable conditions are available (adequate moisture, oxygen and suitable temperature), they germinate.The hard seed coat provides protection to the young embryo.APOMIXIS AND POLYEMBRYONY Although seeds, in general are the products of fertilisation, a few flowering plants such as some species of Asteraceae and grasses, have evolved a special mechanism, to produce seeds without fertilisation, called apomixis. What is fruit production without fertilisation called? Thus, apomixis is a form of asexual reproduction that mimics sexual reproduction. There are several ways of development of apomictic seeds. In some species, the diploid egg cell is formed without reduction division and develops into the embryo without fertilisation. More often, as in many Citrus and Mangovarieties some of the nucellar cells surrounding the embryo sac start dividing, protrude into the embryo sac and develop into the embryos. In such species each ovule contains many embryos. Occurrence of more than one embryo in a seed is referred to as polyembryony.The pistil has three parts – the stigma, style and the ovary. Ovules are present in the ovary. The ovules have a stalk called funicle, protective integument(s), and an opening called micropyle. The central tissue is the nucellus in which the archesporium differentiates. A cell of the archesporium, the megaspore mother cell divides meiotically and one of the megaspores forms the embryo sac (the female gametophyte). The mature embryo sac is 7-celled and 8-nucleate. At the micropylar end isthe egg apparatus consisting of two synergids and an egg cell. At the chalazal end are three antipodals. At the centre is a large central cell with two polar nuclei. Pollination is the mechanism to transfer pollen grains from the anther to the stigma. Pollinating agents are either abiotic (wind and water) or biotic (animals). Pollen-pistil interaction involves all events from the landing of pollen grains on the stigma until the pollen tube enters the embryo sac (when the pollen is compatible) or pollen inhibition (when the pollen is incompatible). Following compatible pollination, pollen grain germinates on the stigma and the resulting pollen tube grow through the style, enter the ovules and finally discharges two male gametes in one of the synergids. Angiosperms exhibit double fertilisation because two fusion events occur in each embryo sac, namely syngamy and triple fusion. The products of these fusions are the diploid zygote and the triploid primary endosperm nucleus (in the primary endosperm cell). Zygote develops into the embryo and the primary endosperm cell forms the endosperm tissue. Formation of endosperm always precedes development of the embryo. The developing embryo passes through different stages such as the proembryo, globular and heart-shaped stages before maturation. Mature dicotyledonous embryo has two cotyledons and an embryonal axis with epicotyl and hypocotyl. Embryos of monocotyledons have a single cotyledon. After fertilisation, ovary develops into fruit and ovules develop into seeds. A phenomenon called apomixis is found in some angiosperms, particularly in grasses. It results in the formation of seeds without fertilisation. Apomicts have several advantages in horticulture and agriculture. Some angiosperms produce more than one embryo in their seed. This phenomenon is called polyembryony.
___@organised notes_____
.Clot buster agent streptokinase is produced by (1) Streptococcus (2) Trichoderma (3) Clostridium (4) Aspergillus
Answer ▽ ✅Verified
Answer (1) Clot buster agent is produced Streptococcus.Chemicals, Enzymes and other Bioactive Molecules Microbes are also used for commercial and industrial production of certain chemicals like organic acids, alcohols and enzymes. Examples of acid producers are Aspergillus niger (a fungus) of citric acid, Acetobacter aceti (a bacterium) of acetic acid; Clostridium butylicum (a bacterium) of butyric acid and Lactobacillus (a bacterium) of lactic acid. Yeast (Saccharomyces cerevisiae) is used for commercial production of ethanol. Microbes are also used for production of enzymes. Lipases are used in detergent formulations and are helpful in removing oily stains from the laundry. You must have noticed that bottled fruit juices bought from the market are clearer as compared to those made at home. This is because the bottled juices are clarified by the use of pectinases and proteases. Streptokinase produced by the bacterium Streptococcus and modified by genetic engineering is used as a ‘clot buster’ for removing clots from the blood vessels of patients who have undergone myocardial infarction leading to heart attack. Another bioactive molecule, cyclosporin A, that is used as an immunosuppressive agent in organ-transplant patients, is produced by the fungus Trichoderma polysporum. Statins produced by the yeast Monascus purpureus have been commercialised as blood-cholesterol lowering agents. It acts by competitively inhibiting the enzyme responsible for synthesis of cholesterol.Coagulation of BloodThis is a mechanism to prevent excessive loss of blood from the body. You would have observed a dark reddish brown scum formed at the site of a cut or an injury over a period of time. It is a clot or coagulam formed mainly of a network of threads called fibrins in which dead and damaged formed elements of blood are trapped. Fibrins are formed by the conversion of inactive fibrinogens in the plasma by the enzyme thrombin. Thrombins, in turn are formed from another inactive substance present in the plasma called prothrombin. An enzyme complex, thrombokinase, is required for the above reaction. This complex is formed by a series of linked enzymic reactions (cascade process) involving a number of factors present in the plasma in an inactive state. An injury or a trauma stimulates the platelets in the blood to release certain factors which activate the mechanism of coagulation. Certain factors released by the tissues at the site of injury also can initiate coagulation. Calcium ions play a very important role in clotting.
___@organised notes_____
.Chromosomal complement of a person affected from phenylketonuria is (1) 44+XXY (2) 44+XY or 44+XX (3) 44+XO (4) 44+XXX
Answer ▽ ✅Verified
Answer (2) Phenylketonuria is a Mendelian disorder.PMendelian Disorders Broadly, genetic disorders may be grouped into two categories – Mendelian disorders and Chromosomal disorders. Mendelian disorders are mainly determined by alteration or mutation in the single gene. These disorders are transmitted to the offspring on the same lines as we have studied in the principle of inheritance. The pattern of inheritance of such Mendelian disorders can be traced in a family by the pedigree analysis. Most common and prevalent Mendelian disorders are Haemophilia, Cystic fibrosis, Sicklecell anaemia, Colour blindness, Phenylketonuria, Thalassemia, etc. It is important to mention here that such Mendelian disorders may be dominant or recessive. By pedigree analysis one can easily understand whether the trait in question is dominant or recessive. Similarly, the trait may also be linked to the sex chromosome as in case of haemophilia. It is evident that this X-linked recessive trait shows transmission from carrier female to male progeny.Phenylketonuria : This inborn error of metabolism is also inherited as the autosomal recessive trait. The affected individual lacks an enzyme that converts the amino acid phenylalanine into tyrosine. As a result of this phenylalanine is accumulated and converted into phenylpyruvic acid and other derivatives. Accumulation of these in brain results in mental retardation. These are also excreted through urine because of its poor absorption by kidney.LEIOTROPY We have so far seen the effect of a gene on a single phenotype or trait. There are however instances where a single gene can exhibit multiple phenotypic expression. Such a gene is called a pleiotropic gene. The underlying mechanism of pleiotropy in most cases is the effect of a gene on metabolic pathways which contribute towards different phenotypes. An example of this is the disease phenylketonuria, which occurs in humans. The disease is caused by mutation in the gene that codes for the enzyme phenyl alanine hydroxylase (single gene mutation). This manifests itself through phenotypic expression characterised by mental retardation and a reduction in hair and skin pigmentation.Biological products: Medicines required to treat certain human diseases can contain biological products, but such products are often expensive to make. Transgenic animals that produce useful biological products can be created by the introduction of the portion of DNA (or genes) which codes for a particular product such as human protein (a-1-antitrypsin) used to treat emphysema. Similar attempts are being made for treatment of phenylketonuria (PKU) and cystic fibrosis. In 1997, the first transgenic cow, Rosie, produced human protein-enriched milk (2.4 grams per litre). The milk contained the human alpha-lactalbumin and was nutritionally a more balanced product for human babies than natural cow-milk.
___@organised notes_____
.How many of the given are autosomal recessive disorder? Heamophillia, Phenylketonuria, Sickle cell anemia, Myotonic dystrophy (1) Two (2) Three (3) Four (4) One
Answer ▽ ✅Verified
Answer (1) Phenylketonuria and Sickle cell anemia.
___@organised notes_____
.Enzymes which have deoxy-ribonucleic acid synthesis capability are I. RNA polymerase I II. Reverse transcriptase III. DNA polymerase (1) II and III only (2) I and II only (3) III only (4) I and III only
Answer ▽ ✅Verified
Answer (1) Reverse transcriptase and DNA polymerase enzymes synthesise the DNA.AIDS The word AIDS stands for Acquired Immuno Deficiency Syndrome. This means deficiency of immune system, acquired during the lifetime of an individual indicating that it is not a congenital disease. ‘Syndrome’ means a group of symptoms. AIDS was first reported in 1981 and in the last twenty-five years or so, it has spread all over the world killing more than 25 million persons. AIDS is caused by the Human Immuno deficiency Virus (HIV), a member of a group of viruses called retrovirus, which have an envelope enclosing the RNA genome (Figure 8.6). Transmission of HIV-infection generally occurs by (a) sexual contact with infected person, (b) by transfusion of contaminated blood and blood products, (c) by sharing infected needles as in the case of intravenous drug abusers and (d) from infected mother to her child through placenta. So, people who are at high risk of getting this infection includes - individuals who have multiplesexual partners, drug addicts who take drugs intravenously, individuals who require repeated blood transfusions and children born to an HIV infected mother.It is important to note that HIV/AIDS is not spread by mere touch or physical contact; it spreads only through body fluids. It is, hence, imperative, for the physical and psychological well-being, that the HIV/AIDS infected persons are not isolated from family and society. There is always a time-lag between the infection and appearance of AIDS symptoms. This period may vary from a few months to many years (usually 5-10 years).After getting into the body of the person, the virus enters into macrophages where RNA genome of the virus replicates to form viral DNA with the help of the enzyme reverse transcriptase. This viral DNA gets incorporated into host cell’s DNA and directs the infected cells to produce virus particles (Figure 8.6). The macrophages continue to produce virus and in this way acts like a HIV factory. Simultaneously, HIV enters into helper T-lymphocytes (TH), replicates and produce progeny viruses. The progeny viruses released in the blood attack other helper T-lymphocytes. This is repeated leading to a progressive decrease in the number of helper Tlymphocytes in the body of the infected person. During this period, the person suffers from bouts of fever, diarrhoea and weight loss. Due to decrease in the number of helper T lymphocytes, the person starts suffering from infections that could have been otherwise overcome such as those due to bacteria especially Mycobacterium, viruses, fungi and even parasites like Toxoplasma. The patient becomes so immuno-deficient that he/she is unable to protect himself/herself against these infections. A widely used diagnostic test for AIDS is enzyme linked immuno-sorbent assay (ELISA). Treatment of AIDS with anti-retroviral drugs is only partially effective. They can only prolong the life of the patient but cannot prevent death, which is inevitable.PRINCIPLES OF BIOTECHNOLOGYAmong many, the two core techniques that enabled birth of modern biotechnology are : (i) Genetic engineering : Techniques to alter the chemistry of genetic material (DNA and RNA),to introduce these into host organisms and thus change the phenotype of the host organism. (ii) Bioprocess engineering: Maintenance of sterile (microbial contamination-free) ambience in chemical engineering processes to enable growth of only the desired microbe/eukaryotic cell in large quantities for the manufacture of biotechnological products like antibiotics, vaccines, enzymes, etc. Let us now focus on the first instance of the construction of an artificial recombinant DNA molecule. The construction of the first recombinant DNA emerged from the possibility of linking a gene encoding antibiotic resistance with a native plasmid (autonomously replicating circular extra-chromosomal DNA) of Salmonella typhimurium. Stanley Cohen and Herbert Boyer accomplished this in 1972 by isolating the antibiotic resistance gene by cutting out a piece of DNA from a plasmid which was responsible for conferring antibiotic resistance. The cutting of DNA at specific locations became possible with the discovery of the so-called‘molecular scissors’– restriction enzymes. The cut piece of DNA was then linked with the plasmid DNA. These plasmid DNA act as vectors to transfer the piece of DNA attached to it.The linking of antibiotic resistance gene with the plasmid vector became possible with the enzyme DNA ligase, which acts on cut DNA molecules and joins their ends. This makes a new combination of circular autonomously replicating DNA created in vitro and is known as recombinant DNA. When this DNA is transferred into Escherichia coli, a bacterium closely related to Salmonella, it could replicate using the new host’s DNA polymerase enzyme and make multiple copies. The ability to multiply copies of antibiotic resistance gene in E. coli was called cloning of antibiotic resistance gene in E. coli. You can hence infer that there are three basic steps in genetically modifying an organism — (i) identification of DNA with desirable genes; (ii) introduction of the identified DNA into the host; (iii) maintenance of introduced DNA in the host and transfer of the DNA to its progeny.Amplification of Gene of Interest using PCR PCR stands for Polymerase Chain Reaction. In this reaction, multiple copies of the gene (or DNA) of interest is synthesised in vitro using twosets of primers (small chemically synthesised oligonucleotides that are complementary to the regions of DNA) and the enzyme DNA polymerase. The enzyme extends the primers using the nucleotides provided in the reaction and the genomic DNA as template. If the process of replication of DNA is repeated many times, the segment of DNA can be amplified to approximately billion times, i.e., 1 billion copies are made. Such repeated amplification is achieved by the use of a thermostable DNA polymerase (isolated from a bacterium, Thermus aquaticus), which remain active during the high temperature induced denaturation of double stranded DNA. The amplified fragment if desired can now be used to ligate with a vector for further cloningMolecular Diagnosis You know that for effective treatment of a disease, early diagnosis and understanding its pathophysiology is very important. Using conventional methods of diagnosis (serum and urine analysis, etc.) early detection is not possible. Recombinant DNA technology, Polymerase Chain Reaction (PCR) and Enzyme Linked Immuno-sorbent Assay (ELISA) are some of the techniques that serve the purpose of early diagnosis.A single stranded DNA or RNA, tagged with a radioactive molecule (probe) is allowed to hybridise to its complementary DNA in a clone of cells followed by detection using autoradiography. The clone having the mutated gene will hence not appear on the photographic film, because the probe will not have complementarity with the mutated gene. ELISA is based on the principle of antigen-antibody interaction. Infection by pathogen can be detected by the presence of antigens (proteins, glycoproteins, etc.) or by detecting the antibodies synthesised against the pathogen.The Machinery and the Enzymes In living cells, such as E. coli, the process of replication requires a set of catalysts (enzymes). The main enzyme is referred to as DNA-dependent DNA polymerase, since it uses a DNA template to catalyse the polymerisation of deoxynucleotides. These enzymes are highly efficient enzymes as they have to catalyse polymerisation of a large number of nucleotides in a very short time. E. coli that has only 4.6 ×106 bp (compare it with human whose diploid content is 6.6 × 109 bp), completes the process of replication within 18 minutes; that means the average rate of polymerisation has to be approximately 2000 bp per second. Not only do these polymerases have to be fast, but they also have to catalyse the reaction with high degree of accuracy. Any mistake during replication would result into mutations. Furthermore, energetically replication is a very expensive process. Deoxyribonucleoside triphosphates serve dual purposes. In addition to acting as substrates, they provide energy for polymerisation reaction (the two terminal phosphates in a deoxynucleoside triphosphates are high-energy phosphates, same as in case of ATP).Transcription Unit A transcription unit in DNA is defined primarily by the three regions in the DNA: (i) A Promoter (ii) The Structural gene (iii) A TerminatorThere is a convention in defining the two strands of the DNA in the structural gene of a transcription unit. Since the two strands have opposite polarity and the DNA-dependent RNA polymerase also catalyse the polymerisation in only one direction, that is, 5'®3' , the strand that has the polarity 3'®5' acts as a template, and is also referred to as template strand. The other strand which has the polarity (5'®3') and the sequence same as RNA (except thymine at the place of uracil), is displaced during transcription. Strangely, this strand (which does not code for anything) is referred to as coding strand. All the reference point while defining a transcription unit is made with coding strand.The promoter and terminator flank the structural gene in a transcription unit. The promoter is said to be located towards 5'-end (upstream) of the structural gene (the reference is made with respect to the polarity of coding strand). It is a DNA sequence that provides binding site for RNA polymerase, and it is the presence of a promoter in a transcription unit that also defines the template and coding strands. By switching its position with terminator, the definition of coding and template strands could be reversed. The terminator is located towards 3'-end (downstream) of the coding strand and it usually defines the end of the process of transcription (Figure 6.9). There are additional regulatory sequences that may be present further upstream or downstream to the promoter.Types of RNA and the process of Transcription In bacteria, there are three major types of RNAs: mRNA (messenger RNA), tRNA (transfer RNA), and rRNA (ribosomal RNA). All three RNAs are needed to synthesise a protein in a cell. The mRNA provides the template, tRNA brings aminoacids and reads the genetic code, and rRNAs play structural and catalytic role during translation. There is single DNA-dependent RNA polymerase that catalyses transcription of all types of RNA in bacteria. RNA polymerase binds to promoter and initiates transcription (Initiation). It uses nucleoside triphosphates as substrateand polymerises in a template depended fashion following the rule of complementarity. It somehow also facilitates opening of the helix and continues elongation. Only a short stretch of RNA remains bound to the enzyme. Once the polymerases reaches the terminator region, the nascent RNA falls off, so also the RNA polymerase. This results in termination of transcription. An intriguing question is that how is the RNA polymerases able to catalyse all the three steps, which are initiation, elongation and termination. The RNA polymerase is only capable of catalysing the process of elongation. It associates transiently with initiation-factor (s) and termination-factor (r) to initiate and terminate the transcription, respectively. Association with these factors alter the specificity of the RNA polymerase to either initiate or terminate (Figure 6.10). In bacteria, since the mRNA does not require any processing to become active, and also since transcription and translation take place in the same compartment (there is no separation of cytosol and nucleus in bacteria), many times the translation can begin much before the mRNA is fully transcribed. Consequently, the transcription and translation can be coupled in bacteria. In eukaryotes, there are two additional complexities – (i) There are at least three RNA polymerases in the nucleus (in addition to the RNA polymerase found in the organelles). There is a clear cut division of labour. The RNA polymerase I transcribes rRNAs(28S, 18S, and 5.8S), whereas the RNA polymerase III is responsible for transcription of tRNA, 5srRNA, and snRNAs (small nuclear RNAs). The RNA polymerase II transcribes precursor of mRNA, the heterogeneous nuclear RNA (hnRNA). (ii) The second complexity is that the primary transcripts contain both the exons and the introns and are non-functional. Hence, it is subjected to a process called splicing where the introns are removed and exons are joined in a defined order. hnRNA undergoes additional processing called as capping and tailing. In capping an unusual nucleotide (methyl guanosine triphosphate) is added to the 5'-end of hnRNA. In tailing, adenylate residues (200-300) are added at 3'-end in a template independent manner. It is the fully processed hnRNA, now called mRNA, that is transported out of the nucleus for translation (Figure 6.11). The significance of such complexities is now beginning to be understood. The split-gene arrangements represent probably an ancient feature of the genome. The presence of introns is reminiscent of antiquity, and the process of splicing represents the dominance of RNA-world. In recent times, the understanding of RNA and RNA-dependent processes in the living system have assumed more importance.
___@organised notes_____
.Lac I gene of Lac operon (1) Has a binding site for repressor protein (2) Is present upstream of Lac operator site (3) Is present downstream to Lac a gene (4) Transcribes the permease protein
Answer ▽ ✅Verified
Answer (2) Lac I gene transcribe the repressor protein.REGULATION OF GENE EXPRESSION Regulation of gene expression refers to a very broad term that may occur at various levels. Considering that gene expression results in the formation of a polypeptide, it can be regulated at several levels. In eukaryotes, the regulation could be exerted at (i) transcriptional level (formation of primary transcript), (ii) processing level (regulation of splicing), (iii) transport of mRNA from nucleus to the cytoplasm, (iv) translational level. The genes in a cell are expressed to perform a particular function or a set of functions. For example, if an enzyme called beta-galactosidase is synthesised by E. coli, it is used to catalyse the hydrolysis of a disaccharide, lactose into galactose and glucose; the bacteria use them as a source of energy. Hence, if the bacteria do not have lactose around them to be utilised for energy source, they would no longer require the synthesis of the enzyme beta-galactosidase. Therefore, in simple terms, it is the metabolic, physiological or environmental conditions that regulate the expression of genes. The development and differentiation of embryo into adult organisms are also a result of the coordinated regulation of expression of several sets of genes. In prokaryotes, control of the rate of transcriptional initiation is the predominant site for control of gene expression. In a transcription unit, the activity of RNA polymerase at a given promoter is in turn regulated by interaction with accessory proteins, which affect its ability to recognise start sites. These regulatory proteins can act both positively (activators) and negatively (repressors). The accessibility of promoter regions of prokaryotic DNA is in many cases regulated by the interaction of proteins with sequences termed operators. The operator region is adjacent to the promoter elements in most operons and in most cases the sequences of the operator bind a repressor protein. Each operon has its specific operator and specific repressor. For example, lac operator is present only in the lac operon and it interacts specifically with lac repressor only.The Lac operon The elucidation of the lac operon was also a result of a close association between a geneticist, Francois Jacob and a biochemist, Jacque Monod. They were the first to elucidate a transcriptionally regulated system. In lac operon (here lac refers to lactose), a polycistronic structural gene is regulated by a common promoter and regulatory genes. Such arrangement is very common in bacteria and is referred to as operon. To name few such examples, lac operon, trp operon, ara operon, his operon, val operon, etc. The lac operon consists of one regulatory gene (the i gene – here the term i does not refer to inducer, rather it is derived from the word inhibitor) and three structural genes (z, y, and a). The i gene codes for the repressor of the lac operon. The z gene codes for beta-galactosidase (b-gal), which is primarily responsible for the hydrolysis of the disaccharide, lactose into its monomeric units, galactose and glucose. The y gene codes for permease, which increases permeability of the cell to b-galactosides. The a gene encodes a transacetylase. Hence, all the three gene products in lac operon are required for metabolism of lactose. In most other operons as well, the genes present in the operon are needed together to function in the same or related metabolic pathway.Lactose is the substrate for the enzyme beta-galactosidase and it regulates switching on and off of the operon. Hence, it is termed as inducer. In the absence of a preferred carbon source such as glucose, if lactose is provided in the growth medium of the bacteria, the lactose is transported into the cells through the action of permease (Remember, a very low level of expression of lac operon has to be present in the cell all the time, otherwise lactose cannot enter the cells). The lactose then induces the operon in the following manner. The repressor of the operon is synthesised (all-the-time – constitutively) from the i gene. The repressor protein binds to the operator region of the operon and prevents RNA polymerase from transcribing the operon. In the presence of an inducer, such as lactose or allolactose, the repressor is inactivated by interaction with the inducer. This allows RNA polymerase access to the promoter and transcription proceeds (Figure 6.14). Essentially, regulation of lac operon can also be visualised as regulation of enzyme synthesis by its substrate. Remember, glucose or galactose cannot act as inducers for lac operon. Can you think for how long the lac operon would be expressed in the presence of lactose? Regulation of lac operon by repressor is referred to as negative regulation. Lac operon is under control of positive regulation as well, but it is beyond the scope of discussion at this level.MOLECULAR BASIS OF INHERITANCE SUMMARY Nucleic acids are long polymers of nucleotides. While DNA stores genetic information, RNA mostly helps in transfer and expression of information. Though DNA and RNA both function as genetic material, but DNA being chemically and structurally more stable is a better genetic material. However, RNA is the first to evolve and DNA was derived from RNA. The hallmark of the double stranded helical structure of DNA is the hydrogen bonding between the bases from opposite strands. The rule is that Adenine pairs with Thymine through two H-bonds, and Guanine with Cytosine through three H-bonds. This makes one strand complementary to the other. The DNA replicates semiconservatively, the process is guided by the complementary H-bonding. A segment of DNA that codes for RNA may in a simplistic term can be referred as gene. During transcription also, one of the strands of DNA acts a template to direct the synthesis of complementary RNA. In bacteria, the transcribed mRNA is functional, hence can directly be translated. In eukaryotes, the gene is split. The coding sequences, exons, are interrupted by non-coding sequences, introns. Introns are removed and exons are joined to produce functional RNA by splicing. The messenger RNA contains the base sequences that are read in a combination of three (to make triplet genetic code) to code for an amino acid. The genetic code is read again on the principle of complementarity by tRNA that acts as an adapter molecule. There are specific tRNAs for every amino acid. The tRNA binds to specific amino acid at one end and pairs through H-bonding with codes on mRNA through its anticodons. The site of translation (protein synthesis) is ribosomes, which bind to mRNA and provide platform for joining of amino acids. One of the rRNA acts as a catalyst for peptide bond formation, which is an example of RNA enzyme (ribozyme). Translation is a process that has evolved around RNA, indicating that life began around RNA. Since, transcription and translation are energetically very expensive processes, these have to be tightly regulated. Regulation of transcription is the primary step for regulation of gene expression. In bacteria, more than one gene is arranged together and regulated in units called as operons. Lac operon is the prototype operon in bacteria, which codes for genes responsible for metabolism of lactose. The operon is regulated by the amount of lactose in the medium where the bacteria are grown. Therefore, this regulation can also be viewed as regulation of enzyme synthesis by its substrate. Human genome project was a mega project that aimed to sequence every base in human genome. This project has yielded much new information. Many new areas and avenues have opened up as a consequence of the project. DNA Fingerprinting is a technique to find out variations in individuals of a population at DNA level. It works on the principle of polymorphism in DNA sequences. It has immense applications in the field of forensic science, genetic biodiversity and evolutionary biology.In the medium where E. coli was growing, lactose was added, which induced the lac operon. Then, why does lac operon shut down some time after addition of lactose in the medium?Phylum – ArthropodaExamples: Economically important insects – Apis (Honey bee), Bombyx (Silkworm), Laccifer (Lac insect) Vectors – Anopheles, Culex and Aedes (Mosquitoes) Gregarious pest – Locusta (Locust) Living fossil – Limulus (King crab).
___@organised notes_____
.Which of the following is a wheat variety rich in proteins and developed through biofortification? (1) Himgiri (2) Atlas 66 (3) Sonalika (4) Kalyan Sona
Answer ▽ ✅Verified
Answer (2) Atlas 66 a wheat variety rich in proteins and developed through biofortification. Biofortification – breeding crops with higher levels of vitamins and minerals, or higher protein and healthier fats – is the most practical means to improve public health. Breeding for improved nutritional quality is undertaken with the objectives of improving – (i) Protein content and quality; (ii) Oil content and quality; (iii) Vitamin content; and (iv) Micronutrient and mineral content. In 2000, maize hybrids that had twice the amount of the amino acids, lysine and tryptophan, compared to existing maize hybrids were developed. Wheat variety, Atlas 66, having a high protein content, has been used as a donor for improving cultivated wheat. It has been possible to develop an iron-fortified rice variety containing over five times as much iron as in commonly consumed varieties. The Indian Agricultural Research Institute, New Delhi has also released several vegetable crops that are rich in vitamins and minerals, e.g., vitamin A enriched carrots, spinach, pumpkin; vitamin C enriched bitter gourd, bathua, mustard, tomato; iron and calcium enriched spinach and bathua; and protein enriched beans – broad, lablab, French and garden peas..wheat.Swaminathan initiated collaboration with Norman Borlaug, which culminated in the ‘Green Revolution’ through introduction of Mexican varieties of wheat in India. This was highly recognised and appreciated. He is also the initiator of ‘Lab-to-Land’, food security and several other environmental programmes. He has been honoured with Padma Bhushan and several other prestigious awards, medals and fellowships by institutions of excellence.Green revolution was dependent to a large extent on plant breeding techniques for development of high-yielding and disease resistant varieties in wheat, rice, maize, etc.The development of several high yielding varieties of wheat and rice in the mid-1960s, as a result of various plant breeding techniques led to dramatic increase in food production in our country. This phase is often referred to as the Green Revolution.Wheat and Rice: During the period 1960 to 2000, wheat production increased from 11 million tonnes to 75 million tonnes while rice production went up from 35 million tonnes to 89.5 million tonnes. This was due to the development of semi-dwarf varieties of wheat and rice. Nobel laureate Norman E. Borlaug, at International Centre for Wheat and Maize Improvement in Mexico, developed semi-dwarf wheat. In 1963, several varieties such as Sonalika and Kalyan Sona, which were high yielding and disease resistant, were introduced all over the wheat-growing belt of India. Semi-dwarf rice varieties were derived from IR-8, (developed at International Rice Research Institute (IRRI), Philippines) and Taichung Native-1 (from Taiwan). The derivatives were introduced in 1966. Later better-yielding semidwarf varieties Jaya and Ratna were developed in India.Plant Breeding for Disease Resistance A wide range of fungal, bacterial and viral pathogens, affect the yield of cultivated crop species, especially in tropical climates. Crop losses can often be significant, up to 20-30 per cent, or sometimes even total. In this situation, breeding and development of cultivars resistant to disease enhances food production. This also helps reduce the dependence on use of fungicides and bacteriocides. Resistance of the host plant is the ability to prevent the pathogen from causing disease and is determined by the genetic constitution of the host plant. Before breeding is undertaken, it is important to know about the causative organism and the mode of transmission. Some of the diseases caused by fungi are rusts, e.g., brown rust of wheat, red rot of sugarcane and late blight of potato; by bacteria– black rot of crucifers; and by viruses – tobacco mosaic, turnip mosaic, etc.Crop:Wheat , Variety = Himgiri , Resistant to disease: leaf & Stripe Rust, Hill bunt.common Name = Wheat, Biological name = Triticum astivUm , Genus = Triticum , Family = Poaceae , Order= Poales , Class =Monocotyledons , Division = Angiosperm .Monocotyledons , Division = Angiosperm .fungi cause diseases in plants and animals; wheat rust-causing Puccinia is an important example.fibrous root system, as seen in the wheat plant.THE SEED The ovules after fertilisation, develop into seeds. A seed is made up of a seed coat and an embryo. The embryo is made up of a radicle, an embryonal axis and one (as in wheat, maize) or two cotyledons (as in gram and pea). Plant Breeding for Developing Resistance to Insect Pests Another major cause for large scale destruction of crop plant and crop produce is insect and pest infestation. Insect resistance in host crop plants may be due to morphological, biochemical or physiological characteristics. Hairy leaves in several plants are associated with resistance to insect pests, e.g, resistance to jassids in cotton and cereal leaf beetle in wheat. In wheat, solid stems lead to non-preference by the stem sawfly and smooth leaved and nectar-less cotton varieties do not attract bollworms. High aspartic acid, low nitrogen and sugar content in maize leads to resistance to maize stem borers. Breeding methods for insect pest resistance involve the same steps as those for any other agronomic trait such as yield or quality and are as discussed earlier. Sources of resistance genes may be cultivated varieties, germplasm collections of the crop or wild relatives.VERNALISATION There are plants for which flowering is either quantitatively or qualitatively dependent on exposure to low temperature. This phenomenon is termed vernalisation. It prevents precocious reproductive development late in the growing season, and enables the plant to have sufficient time to reach maturity. Vernalisation refers specially to the promotion of flowering by a period of low temperature. Some important food plants, wheat, barley, rye have two kinds of varieties: winter and spring varieties. The ‘spring’ variety are normally planted in the spring and come to flower and produce grain before the end of the growing season. Winter varieties, however, if planted in spring would normally fail to flower or produce mature grain within a span of a flowering season. Hence, they are planted in autumn. They germinate, and over winter come out as small seedlings, resume growth in the spring, and are harvested usually around mid-summer. Another example of vernalisation is seen in biennial plants. Biennials are monocarpic plants that normally flower and die in the second season. Sugarbeet, cabbages, carrots are some of the common biennials. Subjecting the growing of a biennial plant to a cold treatment stimulates a subsequent photoperiodic flowering response.Pollen grains of many species cause severe allergies and bronchial afflictions in some people often leading to chronic respiratory disorders– asthma, bronchitis, etc. It may be mentioned that Parthenium or carrot grass that came into India as a contaminant with imported wheat, has become ubiquitous in occurrence and causes pollen allergy.How long do you think the pollen grains retain viability? The period for which pollen grains remain viable is highly variable and to some extent depends on the prevailing temperature and humidity. In some cereals such as rice and wheat, pollen grains lose viability within 30 minutes of their release, and in some members of Rosaceae, Leguminoseae and Solanaceae, they maintain viability for months. You may have heard of storing semen/ sperms of many animals including humans for artificial insemination. It is possible to store pollen grains of a large number of species for years in liquid nitrogen (-1960C). Such stored pollen can be used as pollen banks, similar to seed banks, in crop breeding programmes.The number of ovules in an ovary may be one (wheat, paddy, mango) to many (papaya, water melon, orchids).Endosperm may either be completely consumed by the developing embryo (e.g., pea, groundnut, beans) before seed maturation or it may persist in the mature seed (e.g. castor and coconut) and be used up during seed germination. Split open some seeds of castor, peas, beans, groundnut, fruit of coconut and look for the endosperm in each case. Find out whether the endosperm is persistent in cereals – wheat, rice and maize.Mature seeds may be non-albuminous or ex-albuminous. Nonalbuminous seeds have no residual endosperm as it is completely consumed during embryo development (e.g., pea, groundnut). Albuminous seeds retain a part of endosperm as it is not completely used up during embryo development (e.g., wheat, maize, barley, castor). Occasionally, in some seeds such as black pepper and beet, remnants of nucellus are also persistent. This residual, persistent nucellus is the perisperm.
___@organised notes_____
.Diapause (1) Is a suspended development stage in zooplanktons (2) Can be seen in most of the fishes (3) Is seen in all sea animals (4) Is present in phytoplanktons
Answer ▽ ✅Verified
Answer (1) Diapause is a suspended development stage in zooplanktons.Suspend: In bacteria, fungi and lower plants, various kinds of thickwalled spores are formed which help them to survive unfavourable conditions – these germinate on availability of suitable environment. In higher plants, seeds and some other vegetative reproductive structures serve as means to tide over periods of stress besides helping in dispersal – they germinate to form new plants under favourable moisture and temperature conditions. They do so by reducing their metabolic activity and going into a state of ‘dormancy’. In animals, the organism, if unable to migrate, might avoid the stress by escaping in time. The familiar case of bears going into hibernation during winter is an example of escape in time. Some snails and fish go into aestivation to avoid summer–related problems-heat and dessication. Under unfavourable conditions many zooplankton species in lakes and ponds are known to enter diapause, a stage of suspended development.ORGANISMS AND POPULATIONS SUMMARY As a branch of biology, Ecology is the study of the relationships of living organisms with the abiotic (physico-chemical factors) and biotic components (other species) of their environment. It is concerned with four levels of biological organisation-organisms, populations, communities and biomes. Temperature, light, water and soil are the most important physical factors of the environment to which the organisms are adapted in various ways. Maintenance of a constant internal environment (homeostasis) by the organisms contributes to optimal performance, but only some organisms (regulators) are capable of homeostasis in the face of changing external environment. Others either partially regulate their internal environment or simply conform. A few other species have evolved adaptations to avoid unfavourable conditions in space (migration) or in time (aestivation, hibernation, and diapause). Evolutionary changes through natural selection take place at the population level and hence, population ecology is an important area of ecology. A population is a group of individuals of a given species sharing or competing for similar resources in a defined geographical area. Populations have attributes that individual organisms do not- birth rates and death rates, sex ratio and age distribution. The proportion of different age groups of males and females in a population is often presented graphically as age pyramid; its shape indicates whether a population is stationary, growing or declining. Ecological effects of any factors on a population are generally reflected in its size (population density), which may be expressed in different ways (numbers, biomass, per cent cover, etc.,) depending on the species. Populations grow through births and immigration and decline through deaths and emigration. When resources are unlimited, the growth is usually exponential but when resources become progressively limiting, the growth pattern turns logistic. In either case, growth is ultimately limited by the carrying capacity of the environment. The intrinsic rate of natural increase (r) is a measure of the inherent potential of a population to grow. In nature populations of different species in a habitat do not live in isolation but interact in many ways. Depending on the outcome, these interactions between two species are classified as competition (both species suffer), predation and parasitism (one benefits and the other suffers), commensalism (one benefits and the other is unaffected), amensalism (one is harmed, other unaffected) and mutualism (both species benefit). Predation is a very important process through which trophic energy transfer is facilitated and some predators help in controlling their prey populations. Plants have evolved diverse morphological and chemical defenses against herbivory. In competition, it is presumed that the superior competitor eliminates the inferior one (the Competitive Exclusion Principle), but many closely related species have evolved various mechanisms which facilitate their co-existence. Some of the most fascinating cases of mutualism in nature are seen in plant-pollinator interactions.How is diapause different from hibernation?
___@organised notes_____
.Select the incorrect statement for slime moulds (1) They are saprophytic protists (2) Under suitable conditions, they form an aggregation called plasmodium (3) Their spores lack true cell wall (4) Spores are dispersed by air currents
Answer ▽ ✅Verified
Answer (3) Spores of slime moulds possess true cell wall.KINGDOM PROTISTA All single-celled eukaryotes are placed under Protista, but the boundaries of this kingdom are not well defined. What may be ‘a photosynthetic protistan’ to one biologist may be ‘a plant’ to another. In this book we include Chrysophytes, Dinoflagellates, Euglenoids, Slime moulds and Protozoans under Protista. Members of Protista are primarily aquatic. This kingdom forms a link with the others dealing with plants, animals and fungi. Being eukaryotes, the protistan cell body contains a well defined nucleus and other membrane-bound organelles. Some have flagella or cilia. Protists reproduce asexually and sexually by a process involving cell fusion and zygote formation.Slime Moulds Slime moulds are saprophytic protists. The body moves along decaying twigs and leaves engulfing organic material. Under suitable conditions, they form an aggregation called plasmodium which may grow and spread over several feet. During unfavourable conditions, the plasmodium differentiates and forms fruiting bodies bearing spores at their tips. The spores possess true walls. They are extremely resistant and survive for many years, even under adverse conditions. The spores are dispersed by air currents.Cell Envelope and its Modifications Most prokaryotic cells, particularly the bacterial cells, have a chemically complex cell envelope. The cell envelope consists of a tightly bound three layered structure i.e., the outermost glycocalyx followed by the cell wall and then the plasma membrane. Although each layer of the envelope performs distinct function, they act together as a single protective unit. Bacteria can be classified into two groups on the basis of the differences in the cell envelopes and the manner in which they respond to the staining procedure developed by Gram viz., those that take up the gram stain are Gram positive and the others that do not are called Gram negative bacteria. Glycocalyx differs in composition and thickness among different bacteria. It could be a loose sheath called the slime layer in some, while in others it may be thick and tough, called the capsule. The cell wall determines the shape of the cell and provides a strong structural support to prevent the bacterium from bursting or collapsing.
___@organised notes_____
.All the following properties are true for RNA, except (1) Uracil is present instead of thymine (2) Ribose sugar is present (3) 2 OH group is absent (4) RNA chemically more reactive as compared to DNA
Answer ▽ ✅Verified
Answer (3) Free 2′ OH group is present in RNA molecule.
___@organised notes_____
.Plant hormone which induce the seed germination is (1) GAs (2) Auxin (3) Cytokinin (4) ABA
Answer ▽ ✅Verified
Answer (1) GAS induce the seed germination in most of plants.are another kind of promotory PGR. There are more than 100 gibberellins reported from widely different organisms such as fungi and higher plants. They are denoted as GA1, GA2, GA3 and so on. However, Gibberellic acid (GA3) was one of the first gibberellins to be discovered and remains the most intensively studied form. All GAs are acidic. They produce a wide range of physiological responses in the plants. Their ability to cause an increase in length of axis is used to increase the length of grapes stalks. Gibberellins, cause fruits like apple to elongate and improve its shape. They also delay senescence. Thus, the fruits can be left on the tree longer so as to extend the market period. GA3 is used to speed up the malting process in brewing industry. Sugarcane stores carbohydrate as sugar in their stems. Spraying sugarcane crop with gibberellins increases the length of the stem, thus increasing the yield by as much as 20 tonnes per acre. Spraying juvenile conifers with GAs hastens the maturity period, thus leading to early seed production. Gibberellins also promotes bolting (internode elongation just prior to flowering) in beet, cabbages and many plants with rosette habit.
___@organised notes_____
.Question Dummy
Answer ▽ ✅Verified
Answer Dummy
___@organised notes_____
.Question Dummy
Answer ▽ ✅Verified
Answer Dummy
___@organised notes_____
.Question Dummy
Answer ▽ ✅Verified
Answer Dummy
___@organised notes_____
.Question Dummy
Answer ▽ ✅Verified
Answer Dummy
___@organised notes_____